Processing math: 100%
 Home 
/ /

Colloquia & Seminars

All Seminars

Postdoc Seminars

Graduate Seminars

Other Colloquia & Seminars



Current Seminars

No current seminar

Upcoming Seminars

  1. PSDS & EC Joint Seminar: The largest subcritical component in random graphs of preferential attachment type

    Location: SLMath: Eisenbud Auditorium, Online/Virtual
    Speakers: Peter Mörters (Universität zu Köln)

    Zoom Link

    We identify the size of the largest connected component in a sub-critical inhomogeneous random graph with a kernel of preferential attachment type. The component is polynomial in the graph size with an explicitly given exponent, which is strictly larger than the exponent for the largest degree in the graph. This is in stark contrast to the behaviour of inhomogeneous random graphs with a kernel of rank one. The proof uses local approximation by branching random walks going beyond the weak local limit and large deviation results on killed branching random walks.

    Updated on Mar 27, 2025 09:42 AM PDT
  2. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  3. EC Seminar: The structure of hypergraph Tur\'an densities

    Location: SLMath: Eisenbud Auditorium, Online/Virtual
    Speakers: Bjarne Schuelke (California Institute of Technology)

    Zoom Link

    Since suggested by Tur\'an in 1941, determining the Tur\'an density of hypergraphs has been a notoriously difficult problem at the center of extremal combinatorics. Roughly speaking, the Tur\'an density $\pi(F)$ of a hypergraph $F$ is the threshold of the edge density above which large hypergraphs are guaranteed to contain a copy of $F$. Over the past decade, some progress was made in understanding the set of all Tur\'an densities, i.e., Π(k)={π(F):F is a k-uniform hypergraph},

    as well as its variants. In this talk we discuss recent results and methods that are part of this development.

    Based on joint works with Conlon; King and Sales; Li, Liu, and Sun; Liu, Wang, Yang, and Zhang; and Piga.

    Updated on Mar 28, 2025 11:04 AM PDT
  4. PSDS Graduate Student Seminar: Non-constant ground configurations in the disordered ferromagnet

    Location: SLMath: Eisenbud Auditorium, Online/Virtual
    Speakers: Michal Bassan (University of Oxford)

    Zoom Link

    The disordered ferromagnet is a disordered version of the ferromagnetic Ising model in which the coupling constants are quenched random, chosen independently from a distribution on the non-negative reals. A ground configuration is an infinite-volume configuration whose energy cannot be reduced by finite modifications. It is a long-standing challenge to ascertain whether the disordered ferromagnet on the Z^D lattice admits non-constant ground configurations. When D=2, the problem is equivalent to the existence of bigeodesics in first-passage percolation, so a negative answer is expected. We provide a positive answer in dimensions D>=4, when the distribution of the coupling constants is sufficiently concentrated.

    The talk will discuss the problem and its background, and present ideas from the proof. No previous familiarity with the topic will be assumed. Based on joint work of with Shoni Gilboa and Ron Peled.

    Updated on Mar 25, 2025 03:56 PM PDT
  5. UC Berkeley Combinatorics Seminar: Perfect t-embeddings and Lozenge Tilings

    Location: UC Berkeley, Evans 891
    Speakers: Matthew Nicoletti (UC Berkeley)

    We construct and study the asymptotic properties of "perfect t-embeddings" of uniformly weighted hexagon graphs. Hexagon graphs are subgraphs of the honeycomb lattice, and the corresponding dimer model is equivalent to the model of uniformly random lozenge tilings of the hexagon. We provide exact formulas describing the perfect t-embeddings of these graphs, and we use these to prove the convergence of naturally associated discrete surfaces (coming from the "origami maps") to a maximal surface in Minkowski space carrying the conformal structure of the limiting Gaussian free field (GFF). The emergence of such a maximal surface is predicted to hold for a large class of dimer models by Chelkak, Laslier, and Russkikh. In addition, we check all conditions of a theorem of Chelkak, Laslier, and Russkikh which uses perfect t-embeddings to prove convergence of height fluctuations to the GFF, and thus we complete give a new proof, via t-embeddings, of convergence to the GFF. This is based on joint work with Marianna Russkikh and Tomas Berggren.

    Updated on Mar 26, 2025 03:07 PM PDT
  6. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  7. PSDS & EC Joint Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:34 PM PST
  8. PSDS Open Problem Session

    Location: SLMath: Eisenbud Auditorium
    Updated on Feb 28, 2025 08:02 AM PST
  9. EC Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual
    Speakers: Tara Abrishami (Universität Hamburg)

    Zoom Link

    Updated on Mar 19, 2025 10:27 AM PDT
  10. EC Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual
    Speakers: Igor Balla (Masaryk University)

    Zoom Link

    Updated on Mar 19, 2025 10:28 AM PDT
  11. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  12. EC Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual
    Speakers: Max Xu (NYU Courant)

    Zoom Link

    Updated on Mar 19, 2025 10:30 AM PDT
  13. EC Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual
    Speakers: Robert Krueger (Carnegie Mellon University)

    Zoom Link

    Updated on Mar 19, 2025 10:32 AM PDT
  14. EC Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual
    Speakers: Jiqiang Zheng (Université Nice Sophia-Antipolis)

    Zoom LInk

    Updated on Mar 19, 2025 10:33 AM PDT
  15. PSDS Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:52 PM PST
  16. PSDS Open Problem Session

    Location: SLMath: Eisenbud Auditorium
    Updated on Feb 28, 2025 08:01 AM PST
  17. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  18. PSDS & EC Joint Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:34 PM PST
  19. PSDS Open Problem Session

    Location: SLMath: Eisenbud Auditorium
    Updated on Feb 28, 2025 08:02 AM PST
  20. EC Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:30 PM PST
  21. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  22. PSDS Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:52 PM PST
  23. PSDS Open Problem Session

    Location: SLMath: Eisenbud Auditorium
    Updated on Feb 28, 2025 08:01 AM PST
  24. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  25. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  26. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  27. PSDS & EC Joint Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:34 PM PST
  28. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  29. PSDS Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:52 PM PST
  30. PSDS Open Problem Session

    Location: SLMath: Eisenbud Auditorium
    Updated on Feb 28, 2025 08:01 AM PST
  31. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  32. PSDS & EC Joint Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:34 PM PST
  33. PSDS Open Problem Session

    Location: SLMath: Eisenbud Auditorium
    Updated on Feb 28, 2025 08:02 AM PST
  34. EC Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:30 PM PST
  35. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  36. PSDS Open Problem Session

    Location: SLMath: Baker Board Room
    Updated on Feb 28, 2025 08:01 AM PST
  37. Chancellor Professor Course: Interdisciplinary Topics in Mathematics: Theory of Combinatorial Limits

    Location: UC Berkeley, Dwinelle 183
    Speakers: Daniel Kral (Masaryk University; Universität Leipzig)

    The theory of combinatorial limits is a rapidly developing area of mathematics, which provides analytic tools to study large combinatorial objects (e.g., graphs representing social networks). These analytic methods have led to new ways to cope with notoriously difficult extremal combinatorics questions and established new links between analysis, combinatorics, ergodic theory, group theory, probability theory and statistics. The theory was also the subject of the 2021 Abel Prize lecture of Lovász entitled "Continuous limits of finite structures".

    The course will present basic concepts of the theory of combinatorial limits related to various combinatorial objects such as graphs, permutations, and hypergraphs, and discuss analytic representations of their limits. We will discuss how the theory of combinatorial limits is related to regularity decompositions and how its analytic tools can be applied to various problems in computer science and mathematics, in particular, in extremal combinatorics where Razborov's flag algebra method has led to advances on long-standing open problems (with solutions of the Erdős-Rademacher Problem and the Erdős Pentagon Problem being among the first results obtained using the method). We will demonstrate how the flag algebra arguments can be applied both directly and in a computer-assisted way, including non-asymptotic settings, e.g., to compute particular Ramsey numbers.

    Updated on Jan 17, 2025 02:01 PM PST
  38. PSDS & EC Joint Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:34 PM PST
  39. PSDS Open Problem Session

    Location: SLMath: Eisenbud Auditorium
    Updated on Feb 28, 2025 08:02 AM PST
  40. EC Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:30 PM PST
  41. PSDS Seminar

    Location: SLMath: Eisenbud Auditorium, Online/Virtual

    Zoom Link

    Updated on Feb 06, 2025 01:53 PM PST
  42. PSDS Open Problem Session

    Location: SLMath: Eisenbud Auditorium
    Updated on Feb 28, 2025 08:01 AM PST
  1. ADJOINT 2025

    ADJOINT is a yearlong program that provides opportunities for U.S. mathematicians to conduct collaborative research on topics at the forefront of mathematical and statistical research. Participants will spend two weeks taking part in an intensive collaborative summer session at SLMath. The two-week summer session for ADJOINT 2025 will take place June 30 - July 11, 2025 in Berkeley, California. Researchers can participate in either of the following ways: (1) joining ADJOINT small groups under the guidance of some of the nation's foremost mathematicians and statisticians to expand their research portfolio into new areas, or (2) applying to Self-ADJOINT as part of an existing or newly-formed independent research group ((three-to-five participants is preferred) to work on a new or established research project. Throughout the following academic year, the program provides conference and travel support to increase opportunities for collaboration, maximize researcher visibility, and engender a sense of community among participants. 

    Updated on Mar 24, 2025 09:20 AM PDT

Past Seminars

  1. Seminar PSDS Seminar

    Updated on Mar 14, 2025 02:25 PM PDT
There are more then 30 past seminars. Please go to Past seminars to see all past seminars.